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Grignard and organolithium reagents efficiently react with (S)-N-(tert-butanesulfinyl)-a-fluoroenimines
to provide chiral allylamines in excellent yields and with diastereomeric ratios of up to 96:4. Acidic
removal of the sulfinyl group and simple functional group transformations allow to get enantiopure
fluoroolefin dipeptide mimics.
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Scheme 1. Two synthetic pathways to chiral fluorinated allyl amines 1.
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Fluorine is certainly the element that has experienced the great-
est interest in the recent years as evidenced by the huge number of
fluorinated synthetic pharmaceuticals, agrochemicals, and materi-
als that had been synthesized.1 In the field of medicinal chemistry,
fluorinated molecules clearly have altered physicochemical prop-
erties when compared to non-fluorinated derivatives, and often
with an improved therapeutic profile.2 Among the very large vari-
ety of fluorine-containing compounds, functionalized fluoroolefins
represents a motif that is an effective amide bond mimic. Indeed,
the fluoroolefin moiety is both isosteric and isoelectronic to the
amide function and its stability to chemical or enzymatic hydro-
lysis is high.3 Relevant biologically active compounds that incor-
porate the fluoroolefin moiety include dipeptidyl peptidase
inhibitors,4 substance P analogues,5 and adenylate cyclase produc-
tion stimulators.6

In our ongoing project devoted to the synthesis of new func-
tionalized fluoroolefins, we required the asymmetric access to a-
substituted-b-fluorinated allyl amines 1 (Scheme 1). Few methods
have been described to produce enantioenriched molecules of type
1.5–7 Previously, we described an efficient access to compounds 1
via an asymmetric reductive amination of the corresponding a-
fluoroenones 2 (Scheme 1).8

We herein report a complementary route to 1 from the more
easily accessible fluoroenals 3 via the addition of Grignard and
ll rights reserved.
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organolithium reagents to the C@N bond of chiral a-fluoroeni-
mines 6 and 7 (Schemes 1 and 2).9

Both aliphatic and aromatic aldehydes 4 were considered in our
study. Ethyl dibromofluoroacetate reacted with aldehydes in the
presence of diethylzinc to afford pure (Z) a-fluoroesters 5.10 Alter-
natively, (Z)-5 could be obtained by a modified Julia olefination
Scheme 2. Synthesis of starting a-fluoroenimines 6 and 7. Reagents and condi-
tions: (a) FBr2CCO2Et, Et2Zn, DCM, rt, 3h, 38–60%; (b) DIBAL-H, THF, �78 �C, 3 h,
quant.; (c) SO3�pyridine, DMSO, Et3N, DCM, 0 �C, 82–89%; (d) (S)-(�)-t-butanesul-
finamide, Ti(OEt)4, THF, reflux, 1 h, 89–96%.
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reaction from 4 and ethyl fluorobenzothiazolylsulfonyl acetate
with DBU in the presence of MgBr2.11 Next, a two-step sequence
of reduction and oxidation provided a-fluoro-a,b-unsaturated
aldehydes 3. The straightforward preparation of b-fluoroenimines
6 and 7 was carried out according to the well-established Ellman
procedure with the aid of (S)-(�)-tert-butanesulfinamide (Scheme
2).9a

To determine suitable reaction conditions, we first carried out
the addition of phenylmagnesium bromide to a-fluoroenimines 6
in various solvents (toluene, dichloromethane, and THF). Toluene
provided the best yield and diastereomeric ratio (95%, 10:90 dr)
while CH2Cl2 and THF gave lower yields (87% and 91%, respec-
tively) and lower dr were observed in THF (35:65). Consequently,
all experiments have been carried out in toluene. Representative
results are listed in Table 1.12 Importantly, all Grignard and organo-
lithium reagents were added regioselectively at the imino carbon
of a-fluoroenimines to give (SS,S) and (SS,R) diastereomers. Diaste-
reomeric ratios were determined by 19F NMR on the crude mix-
tures. It is worth noting that all diastereomeric mixtures could
be purified by silica gel column chromatography to afford each
product in a diastereomerically pure form. Attempts to react phe-
nylzinc bromide with substrate 6 at various temperatures failed to
get the addition product 8a; 6 was recovered unchanged. In most
cases, the yield of the desired addition product was high (>82%) ex-
cept for Grignard reagents possessing a b-hydrogen atom. For this
latter, reduction of the C@N bond occurred in quite high propor-
tion, thus lowering the yield of the desired product (entries 11,
13, 22, and 24). To circumvent this side reaction, i-PrLi at �78 �C
was used instead of i-PrMgCl at 0 �C allowing an increase in yield
Table 1
Diastereoselective addition of Grignard and organolithium reagents to b-fluoroenimines 6
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Entry Substrate R2M (equiv) T (�C) Time (h)

1 6 PhMgBr (1.1) �30 2
2 6 PhMgBr (1.1) 0 12
3 6 PhLi (1.6) �78 3
4 6 PhLi (2) �78 0.75
5 6 MeMgBr (1.1) �30 30
6 6 MeMgBr (1.1) 0 0.5
7 6 MeMgBr (1.1) 0 0.75
8 6 MeMgBr (1.1) 0 48
9 6 MeLi (2) �78 5

10 6 MeLi (2) �78 5
11 6 i-PrMgCl (3) 0 0.7
12 6 i-PrLi (3) �78 1
13 6 i-BuMgBr (1.5) 0 0.7
14 6 BnMgCl (1.1) 0 1
15 6 AllylMgBr (3) 0 1
16 6 VinylMgBr (3) 0 0.5

17 7 PhMgBr (1.1) 0 1.5
18 7 PhMgBr (1.6) 0 12
19 7 PhLi (2.6) �78 12
20 7 MeMgBr (2.6) 0 4
21 7 MeMgBr (2) 0 2.5
22 7 i-PrMgCl (3) 0 0.75
23 7 i-PrLi (3) �78 1
24 7 i-BuMgBr (1.1) 0 0.5
25 7 BnMgCl (1.1) 0 1.5
26 7 AllylMgBr (1.1) 0 0.75
27 7 VinylMgBr (1.5) 0 0.75

a Ratio determined by 19F NMR of the crude reaction mixture.
b Conversion determined by 19F NMR of the crude reaction mixture.
for compounds 8c and 9c to 98% and 91%, respectively (entries
12 and 23). We explored a number of Lewis acids as additive to en-
hance the yield and the diastereomeric ratio of the reaction. Thus,
precomplexation of 6 or 7 with AlMe3 (1.1 equiv) and reaction with
PhMgBr did not allow the reaction to take place whereas the reac-
tion with PhLi happened albeit without improvement of yield and
dr (entries 2, 4, and 18). Interestingly, the diastereoselectivity was
dramatically reversed, changing from 10:90 with PhMgBr to 67:33
with PhLi for substrate 6 (entries 1 and 3), and from 14:86 to 65:35
for substrate 7 (entries 17 and 19). Reversals of diastereoselectivity
also applied to the reagents i-PrMgCl/i-PrLi (entries 11, 12, 22, and
23) and in a lower extend to MeMgBr/MeLi (entries 5–10). The
opposite induction is obviously due to different transition states.
Contrary to PhMgBr, the use of MeMgBr on the precomplexed sub-
strate with AlMe3 revealed that the reaction affords the desired
product 8b in high yield with higher dr, up to 6:94 (entry 7). The
addition of MeLi required low temperature (�78 �C) and longer
reaction time, but excellent yields are obtained although with poor
diastereoselectivity (entries 9 and 10). With the aliphatic substrate
7, in the presence of AlMe3, product 9b was also obtained in higher
dr (10:90, entry 21). Under similar conditions BF3�Et2O failed to
produce compound 8b (entry 8). The scope of the reaction was fur-
ther investigated in toluene, with or without AlMe3. Benzyl, allyl,
and vinyl Grignards were evaluated, all giving high product yields
in the range 82–98% with moderate to high drs. In particular,
allylMgBr provided the highest dr in our study in up to 4:96 for
compound 8f (entry 15).

The absolute configuration of the newly created stereogenic
center was established by X-ray crystallography of the minor
and 712

6 and 8 : R1 = 4-MeOC6H4

7 and 9 : R1 = TBDPSO
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Additive (1.1 equiv) Product Yield (%) dra

— 8a 95 10:90
AlMe3 8a 0 —
— 8a 95 67:33
AlMe3 8a 100b 65:35
— 8b 45 25:75
— 8b 93 11:89
AlMe3 8b 82 6:94
BF3�Et2O 8b 0 —
— 8b 96 45:55
AlMe3 8b 96 53:47
— 8c 60 30:70
— 8c 98 60:40
— 8d 27 30:70
— 8e 94 30:70
— 8f 82 4:96
— 8g 95 33:67

— 9a 90 14:86
AlMe3 9a 0 —
— 9a 83 65:35
— 9b 90 21:79
AlMe3 9b 84 10:90
— 9c 41 49:51
— 9c 91 67:33
— 9d 36 30:70
— 9e 90 43:57
— 9f 91 8:92
— 9g 98 35:65
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Scheme 3. Synthesis of Fmoc-Ala-W[(Z)CF@CH]-Gly dipeptide analogue 10.
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diastereomer of 8b, which was found to have the S-configuration.8a

This meant that addition of Grignard reagent MeMgBr to sulfini-
mine 6 proceeded on Re-face of the imine function. By analogy,
we assumed that all other Grignard reagents were added similarly
to b-fluoroenimines 6 and 7.

This methodology is quite general and should be amenable to
the synthesis of a large variety of chiral fluorinated allyl amines. In-
deed, the stereoselective addition of organometallic species served
as the key step in the construction of dipeptide analogues as exem-
plified by the transformation of (SS,S)-9b into Fmoc-Ala-W[(Z)CF@
CH]-Gly 10 (Scheme 3).

In summary, an efficient synthetic method has been developed
whereby diastereoselective addition of Grignard and organolith-
ium reagents to N-(tert-butanesulfinyl)-b-fluoroenimines provided
chiral fluorinated sulfinamides in high yields with diastereomeric
ratios of up to 96:4. Separation of diastereomers on silica gel chro-
matography provided enantiopure versatile intermediates for the
synthesis of stable drug analogues. We have demonstrated that
further simple chemical transformations afforded fluoroolefin
dipeptide mimics.
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